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 Abstract: This paper formalises, in a very stylised way, localised learning of consumers and of 

producers within Pasinetti model of structural change (Pasinetti (1965, 1981, 1993)). Unlike 

Pasinetti model and other models of structural change, which either consider technological change 

exogenously given (see e.g. Baumol (1967), Pasinetti (1965, 1981, 1993), Araujo, R.A., Texeira, 

J.R. (2002)) or assume perfect rationality (see, e.g. Laitner (2001), Kogensmut, Rebelo et (2201)), 

in this paper we endogenise technological and consumption dynamics by assuming bounded 

rational firms and consumers. We provide a concept of (secular) equilibrium and study the dynamic 

properties of the economy. We show also that the theoretical framework here provided is able not 

only to deal with improvements in methods of production, but it is also able to deal with product 

innovation as well. Moreover, our model can easily and consistently incorporate a variety of firms, 

this allowing the study of the dynamics of the economy from an evolutionary point if view (see e.g. 

Metcalfe (1995), (1998)). Therefore, our model could be interpreted as providing also a bridge 

between the literature on structural change and that one on evolutionary dynamics. 
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“We must recognize that knowledge of the extent of production 

possibilities, and of the means and paces of their enlargement, is gained 

only through experience in their use and extension. Optimization and 

exploration thus have to be engaged in simultaneously, with the latter 

serving as guide and strengthen the former. The problem takes on some of 

the aspects of the ascent of a mountain wrapped in fog. Rather than 

searching for a largely invisible optimal path, one may have to look for  a 

good rule for choosing the next stretch of the path with the help of all 

information available at the time” T. C. Koopmans (1967, p. 12) 

 

 

1. Introduction 

 

An increasing dissatisfaction, both at theoretical and at empirical level, is emerging as far as 

neoclassical disaggregate growth theory is concerned. In fact, either the usual hypotheses adopted 

by this theory, i.e. balanced growth and perfect foresight by agents, are evidently implausible. 

Although these assumptions have not been accepted unanimously by neoclassical economists - as 

the Koopmans’ opinion quoted at the beginning attests - they are customarily and uncritically used 

by neoclassical economists and by now characterise their analysis.  

However, a growing theoretical as well as empirical interest is emerging for the study of economies 

in which these assumptions are relaxed. On the one hand, apart the by now “classical” analysis of 

Baumol (1967), Pasinetti (1964), (1981), (1993), Carter (1970) and Leon (1967), quite a few works 

have been done recently at empirical and theoretical level for incorporating structural change in the 

analysis of dynamic economies (Baumol, Blackman and Wolff (1985), Baumol and Wolff (1995), 

Cornwall and Cornwall (1994), Reati and Raganelli (1993), Gundlach (1994), Punzo (1995), Reati 

(1995), Notarangelo (1999), Araujo and Texeira (2002), Montobbio (2002), Lavezzi (2003)). 

Focussing our attention only on the theoretical works, the main aim of these works has been to 

incorporate sectors growing at different rates of growth and to study the economic implication of 

these differences. However, all these works share the common unsatisfactory feature of assuming 

the dynamics of technology and demand determined by exogenously given rules. An important 

consequence of this assumption is that these works are not able to explain not only process 

innovation but also product innovation, i.e. changes over time in the number of commodities 
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produced.
1
 Clearly, any model which pretends to explain satisfactorily the dynamics of modern 

economies has to overcome such shortcomings. More specifically, any theoretically adequate model 

of structural dynamics has to explain the growth (or decay) of sectors and their technological 

dynamics in terms of process and product innovations as the outcome of rational decisions by 

economic agents. However, on the other hand and following Koopmans’ suggestion, any 

empirically acceptable model should not suppose too much rationality by agents, as it is widely held 

that agents take decision on the basis of imperfect knowledge about the environment and with 

limited capacity of elaborating information. Moreover, since the dynamics is generated mainly by 

human learning (see e.g. Pasinetti (1993), Romer (1990) Aghion and Howitt (1998)), an explicit 

treatment of the growth of learning should be explicitly incorporated.  

The awareness of the literature on structural change as far as the problem of learning is concerned 

makes this literature very close to evolutionary theory where this problem is notoriously one of the 

focal point of analysis (see Nelson and Winter (1981) and for surveys Dosi and Nelson (1994), Dosi 

and Winter (2002)). Apart the central role of lack of perfect knowledge of the environment in which 

agents operate and the view that the improvement of knowledge is an objective actively pursued by 

them, further important  features of the evolutionary approach are the heterogeneity of agents 

(consumers and firms), the persistence of their variety over time, and the evolution of the economy 

through the selection process operated usually via the market mechanism(see e.g. Dosi and Winter 

(2002, p. 387-388)). These aspects have been recently tackled by Montobbio (2002), who develops 

a general evolutionary model of structural change. However, his model is still a partial equilibrium 

model as interdependence between sectors is originated via the demand side only. Finally, one 

should not forget that one of the aim of evolutionary theory is to propose an alternative theory of 

growth and dynamics to neoclassical economics, and from this point of view evolutionary growth 

theory and the theory structural change seem to be complementary (see Metcalfe et al. (2005)). 

                                                           
1
 Models like Pasinetti’s one deal more or less explicitly with changes in the number of commodities; however, no 

formal analysis is provided as far as this phenomenon is concerned (see, for example, Pasinetti (1981, p. 206 ff.)) 
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The aim of this paper is to develop a dynamic multisectoral model with structural change à la 

Pasinetti model in which structural change is the outcome of an adaptive economising behaviour of 

consumers and firms with limited knowledge. Following Pasinetti, the analytical framework we use 

is a linear model of production à la Sraffa-Leontief, in which normal prices
2
 and gross output 

evolves over time because of changes in technology and in final demand vector. The evolution of 

technology is due to localised growth of knowledge of producers, while changes in the final demand 

is generated by localised growth of knowledge of households in terms of preferences and feasible 

consumption sets. All agents are assumed to take decisions in an adaptive way, i.e. on the basis of 

their current set of information and preferences that are determined by past experience.  The 

formalisation of dynamics of technology and households’ knowledge is very close to the one 

envisaged by the evolutionist literature (see e.g. Cimoli and Dosi (1995, Section 2)) and has a 

strong empirical ring, it being close to the view endorsed by Evolutionary Operation literature (see 

Box (1957)) and to the idea of “adaptive economising” developed over a long span of years by 

Richard H. Day (see e.g. Day and Kennedy (1971), Day and Groves (1975), Day and Singh (1977), 

Day and Cigno (1978), Benhabib and Day (1981), Day (2002)). As a matter of fact, this approach is 

considered as a possible search strategy by students of the cognitive aspects of research and 

problem-solving (see e.g. Perkins and Weber (1992)) and it seems to be employed systematically in 

specific industries and in R&D activity (see for example, Vincenti (2000), Carlson (2000)) 

The paper is organised as follows. In the next section we provide the basic static model, introduce 

the main terminology and the basic assumptions. In Section 3 we shall introduce a concept of 

stationary equilibrium similar to the Marshallian concept of secular equilibrium (see Marshall 

(1890, Chapter V)) and study the dynamic properties of this model.  Section 4 will provide a 

                                                           
2
 Actually, Pasinetti initially interprets prices as short-period prices and changes of techniques and of demand as long-

period phenomena (see Pasinetti, 1981, p. 29). This is consistent with his assumption that rates of profit are different 

across sectors. However, in developing his analysis Pasinetti eventually points out that the rates of profits should be 

taken as equal across sectors (see Pasinetti, 1981, p. 151), hence, prices should be normal prices. We prefer to stick at 

the beginning with the Marshallian view according to which production prices (or normal prices) are determined in the 

long run and changes of them “caused by the gradual growth of knowledge, …, and the changing conditions of demand 

ad supply from one generation to another” (Marshall, 1890, p. 315) belongs to the realm of secular movements. See, 

however, Section 2 for possible alternative pricing rules. 
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numerical example showing that our model is able not only to consider process innovations but it is 

able to deal also with changes over time in the number of commodities produced. Finally, following 

the view supported by evolutionary economics, according to which even in the long run firms can 

differ from the technological point of view because the tacit nature of knowledge (see e.g. Cimoli 

and Dosi (1995, p. 248)), in Section 5 we briefly indicate the way to extend our model to allow 

heterogeneous firms in the same industry in order to show that our model can easily and 

consistently be developed within the evolutionary theory (see, e.g. Metcalfe (1998), (1996)). Such a 

model can be considered as the extension to a fully-fledged multisectoral model of Montobbio’s 

work. 

 

2. The basic multisectoral model 

 

2.1. The production side. 

Consider a single production n good economy à la Sraffa (1960). We suppose that the set of all 

possible techniques potentially available in sector i = 1, 2, …, n is represented by set Xi. Set X = 

ΠiXi. A generic process of sector i is denoted by bi = (ai, li), where ai is the n-dimensional input 

vector and li is the labour coefficient. A generic technique is described by matrix A = (a1, a2, …, 

an)
T
 of input coefficients and by a vector l = (l1, l2, …, ln) of labour coefficients, where bi = (ai, li) 

∈Xi (the superscript T indicates the transposition operator). A generic technique (A, l) ∈ X is 

indicated also by T. 

For the sake of determinatess, we assume that if technique T = (A, l) is used, then the following 

production price equation is associated: (1+r(T))Ap(T) + w(T)l = p(T), with the usual meaning of 

symbols. The economic meaning of the production prices previously introduced is that free 

competition among industries equalises the rate of profit over industries. This approach is rooted in 

classical tradition and it is characterised by the use of the long period method of analysis (see, e.g. 

Pasinetti  (1975), Kurz and Salvadori (1995), Foley and Michl (1999)) and is in line with Pasinetti’s 
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analysis of structural change (see footnote 2). It is worth pointing out that, however, this is just one 

way to determine prices from technology, and alternatives, equally theoretically and/or empirically 

appealing ways to do it can be envisaged. For example, prices can be determined by following the 

“full-cost” approach (see, e.g. Hall and Hitch (1939), Marris (1964), widely employed by the post-

keynesian theory.
3
 By the way, the extension of the latter work within the structural change context 

would make a bridge between structural change and post-keynesian theory. 

Assumption 1. For every i = 1,…, n, set Xi is a compact subset of 1n+

+ℜ ; moreover, for any bi ∈Xi, 

one has that ai ≥ 0 and ai ≠ 0. Finally, for every i, li > 0. 

Assumption 2: For every T = (A, l) ∈ X, the dominant eigenvalue of matrix A is less then 1. 

Moreover, A is indecomposable.  

Assumption 3. The amount of labour available is fixed al level L > 0.  

Compactness of sets Xi is a simplifying assumption. The last condition of Assumption 1 means that 

labour is necessary to produce any commodity. Assumption 2 ensures that any technique available 

is productive and that all goods are “basics”, i.e. are used directly or indirectly in producing all 

commodities in the economy (see Sraffa (1960)); the last condition is a very stringent requirement. 

The reason for this assumption is mainly technical (see the proofs of Lemma 2 and Proposition 1). 

Assumption 3 is adopted here just for the sake of simplicity and it allows us to focus on the 

dynamics generated by consumption and technical progress only rather than the dynamics generated 

by the increase in population. 

We assume that for every T ∈X, d
T
p(T) = 1, with n

+∈ℜd ; i.e. the bundle of commodity d is used as 

numeraire.  

 

 

 

                                                           
3
 For a multisectoral model of balanced growth with full cost pricing see D’Agata (2006). 
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Lemma 1. The following assertions hold true: 

(i) If r(T) = 0 for every X∈T , then p(T) and w(T) are continuous and strictly positive functions of 

T. 

(ii) There exists a strictly positive number w* such that if w = w*, then p(T) and r(T) are 

continuous and strictly positive functions of T. 

Proof. (i) Immediate from Assumpions 1 and 2. 

(ii) Set r(T) = 0 and define 0 < w* < min [w(T) | T ∈X]. The assertion follows from the fact that set 

X is compact and from point (i) before. 

From now on we assume that w = w*. 

Suppose that technique T = (A, l)∈X is in use and P(T)= (p(T), r(T)) are the associated price vector 

and rate of profit. We say that method ' ' '( , )
i i i i

a l X= ∈b  pays positive extra-profits at the current 

production prices P(T) if ' '(1 ( ))
i i i

r w p+ + <T a p l . 

Producers’ behavioural assumption. Producers introduce a new method if and only if it pays 

positive extra-profits at the current production prices. 

The following lemma, whose proof follows from indecomposability of matrices A,  yields that the 

uniform rate of profit does increase whenever a new method paying positive extra-profits is 

introduced. 

Lemma 2. If (1+r(T))A’p(T) + wl’ ≤ p(T) with a strict inequality satisfied for at least one industry, 

then r(T’) > r(T). 

 

2.2. The consumption side. 

To each technique T = (A, l)∈ X is associated also a quantity system: xA + y = x, where  y is the net 

production vector. Let Q(T) = {y ∈ n

+ℜ  | xA + y = x, x ∈ n

+ℜ , xl ≤ L} be the set of feasible net 

production vectors. Under Assumption 1, the validity of Lemma 3 is immediate. 
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Lemma 3. The gross production vector x solution to the quantity system xA + y = x is a continuous 

function of the net consumption vector y and of the technology T = (A, l). 

Lemma 4. For every T∈X, set Q(T) is compact. Moreover, ( ) ( )
X

Q X Q
∈

=
T

T∪ is compact as well. 

Proof. The former statement follows from Assumption 1. The latter statement is ensured if we show 

that the correspondence defined by set Q(T) is upper hemi continuous (see, e.g. Aliprantis and 

Border (2006, p.560)). However, correspondence Q is actually continuous as can routinely be 

proved by using the sequential characterization of upper and lower hemi continuity (Aliprantis and 

Border (2006, p. 563 ff.)). 

We model the behaviour of households as consumers with preferences defined only on a subset B of 

the net production space n

+ℜ . The subset on which preferences are defined can be interpreted as an 

abstract version of the opportunity set à la Koopmans (1964), and it can be justified by the fact that 

defining preferences is a costly (or, at least, a time-consuming) activity; hence, households have no 

possibility or advantage to express a complete system of preferences over the whole possible net 

production set. Thus, let us denote by 
B
� the (aggregate) preference relation of households with 

respect to the subset B of net production vectors. We adopt the following assumption: 

Assumption 3. For every n
B +⊆ ℜ  the preference system 

B
�  satisfies the conditions of 

completeness, transitivity and continuity. 

Notice that Assumption 3 allows the preference system 
B
�  to change as the subset B changes. This 

is in line with the phenomenon of “context dependent preferences”, which is widely accepted by the 

economic literature (see, e.g. Sen (1997)). The following behavioural assumption is also worth 

emphasising: 

Consumers’ behavioural assumption. For every T∈X, households choose the aggregate net 

consumption vector y  in set Q(T)∩B, according to their preferences 
B
� . 
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3. Adaptive multisectoral model with structural change 

Consider the economy introduced in the previous section and suppose that the firms’ technology 

knowledge in industry i grows over time according to a rule defined by the correspondences: Φi: 

1n n
X

+

+ +×ℜ ×ℜ  → → Xi, indicated by Φi(T, x, P), while the consumption knowledge of households 

grows over time according to the correspondence Γ: 1n n+

+ +ℜ ×ℜ →→ n

+ℜ , indicated by Γ(y, P).  More 

specifically, suppose that at time t technique Tt = (At, lt) is employed and the net demand vector is 

vector yt ∈Q(Tt). From the arguments in the previous section, it follows that from Tt and yt we 

obtain a price vector P(Tt)= (p(Tt), r(Tt)) and a gross production vector x(Tt, yt). According to the 

previous interpretation, set Φi(Tt, x(Tt, yt), P(Tt)) denotes the set of techniques “discovered” in 

industry i at time t and available at time t+1, while set Γ(yt, P(Tt)) denotes the set of net production 

bundles “explored” by households at time t and over which they are able to express at time t+1 

preferences satisfying Assumption 3. As already said, the idea behind the households’ behaviour is 

that the formation of preferences is a costly activity, both in psychological terms and in economic 

terms. Hence, at each time households carry out a local “exploration” of the net consumption space 

and are able to express “nice” preferences only for the known subset so obtained. This subset, 

which is defined by the correspondence Γ, is assumed to depend upon the current consumption 

choice and upon prices. As far as firms are concerned, correspondences Φi would capture the idea, 

widely accepted by the orthodox and non-orthodox economic literature, of local “discovery” of 

methods of production (see, for example, Atkinson and Stiglitz (1965), Antonelli (1995)). The 

increase in the set of technological opportunities is assumed to depend upon the current technique, 

the gross production vector and the price vector. It is worth to emphasise that our analysis is able to 

explain localised technological progress via learning by doing, R&D activity and technological 

spillovers among sectors as well. 

The following assumptions will be adopted: 
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Assumption 4. For every i, correspondence Φi is non-empty, compact valued and continuous. 

Finally, for every T ∈X, n

+∈ℜx , 1n+

+∈ℜP , T ∈ Φi(T, x, P). 

Assumption 5. Correspondence Γ is non-empty, compact valued and continuous. Moreover, for 

every T ∈X, n

+∈ℜy and 1n+

+∈ℜP , y∈ Γ( y , P) and Γ(y, P)∩Q(T) ≠ ∅. 

The first part of Assumptions 4 and 5 are technical and intuitively they mean that the set of 

techniques discovered by firms and of bundles of net production vectors on which households 

express their preferences change “smoothly” with respect to the relevant variables. The inclusion 

part of these assumptions mean that the “discovery” of new technological opportunities for firms 

and the set of commodity bundles on which households are able to express their preferences occur 

“around” the current choice (technique or consumption vector). This is a quite natural assumption to 

adopt. Finally, the non-emptiness condition in Assumption 5 is required to ensure that households 

are able to make feasible choices. 

Set ( , ) ( , ( , ), ( ))
i i

F = ΦT y T x T y P T , ( , ) ( , ( ))G = ΓT y y P T  and H(T, y) = G(y, P)∩Q(T). The 

following lemma points out that the properties of Φi and Γ given in Assumptions 4 and 5 are 

transferred to correspondence Fi and G. 

Lemma 5. The following assertions hold true: 

(i) For every i, correspondence Fi is non-empty, compact valued and continuous. Finally, for every 

T ∈X and n

+∈ℜy , T ∈ Fi(T, y); 

(ii) Correspondence G is non-empty, compact valued and continuous. Moreover, for every T ∈X, 

and n

+∈ℜy , y∈ G( T, y) and H(T, y) ≠ ∅. 

Proof. Non-emptiness is obvious. Compact valuedness and continuity follows from continuity of 

the price and the gross production vectors (see Lemmas 1 and 3) and from well known properties of 

composition of correspondences (see Aliprantis and Border (2006, p. 566)). The remaining 

properties are immediate consequences of Assumptions 4 and 5. 
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A (local) secular configuration (henceforth, a LSC) is a couple: (T*, y*) which satisfies the 

following conditions : 

 (i) T* ∈ F(T*, y*),  

(ii) y* ∈ H(T*, y*),  

(iii) (1+r(T*)aip(T*)+ wli ≥ pi(T*) for every (ai, li) ∈ Fi(T*, y*), and  

(iv) y* ( *, *)G T y
�  y for every y ∈H(T*, y*).  

Conditions (i) and (ii) are consistency conditions: condition (i) says that the technique T* must 

belong to the set of the technologies known when T* is used, condition (ii) says that the net product 

y* must belong to the set of those net production vectors which are feasible and on which 

preferences are defined. Condition (iii) means that at technique T*’s prices no available method pay 

positive extra-profits, i.e. T* is a cost-minimising technique among those known, while condition 

(iv) means that y* must be the preferred net demand vector among those feasible and on which 

preferences are defined. 

For every i, consider a subset Yi of Xi. A cost-minimising technique with respect to set Y = ΠiYi 

(henceforth, a CMT-Y) is a technique T* ∈ ΠiYi such that for every i: (1+r(T*)aip(T*)+ wli ≥ 

pi(T*) for every (ai, li) ∈ Yi. In words, a CMT-Y is a cost minimising technique among those 

available in set  Y. Consider now a subset Z of the net consumption space n

+ℜ . A optimal 

consumption configuration with respect to set Z (henceforth, a OCC-Z) is a net consumption vector 

y* in Z such that y* 
Z
� y, for every y ∈Z. A cost-minimising Y-Z configuration (henceforth, a CM-

YZ) is a combination (T*, y*) such that T* is a CMT-Y and y* is a OCC-Z. Notice that a CM-YZ 

need not to be a LSC as consistency conditions (i) and (ii) in the definition of a LSC are not 

required in the definitions of CMT-Y and OCC-Z. 

The following result is standard and it means that a CMT-Y is a technique that maximises the rate of 

profit among the techniques in Y. 
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Remark 1. For every T’ ∈ X, a CMT-ΠiFi(T’) is a solution to the following programme: max r(T) 

sub T ∈ ΠiFi(T’). 

The dynamics of the economy is modelled according to the following adaptive process: 

Adaptive process (AP): We assume that at time 0 technique T0 = (A0, l0) ∈X is activated and net 

consumption vector y0 ∈Q(T0) is chosen. Technique T0 determines the price vector P0 = (p(T0), 

r(T0)) and, together with the net demand y0 , the gross production vector x0(T0, y0), according to the 

rules specified in the preceding section. At time 0, industry i will “discover” the set of processes 

0 0 0 0 0 0( , ) ( , ( , ), ( ))
i i

F = ΦT y T x T y P T  and these processes will be available at time 1. At the same 

time, households will “discover” set 0 0 0 0( , ) ( , ( ))G = ΓT y y P T of net consumption vectors, in the 

sense that at time 1 they are able to express their preferences on the consumption bundles in this set. 

It is assumed also that at time 1 a CMT-Πi Fi(T0, y0) technique is adopted, say T1, hence a price 

vector P1 = (p(T1), l(T1)) will rule and that a OCC-H(T0, y0)  will be chosen, say y1. And so on. 

Lemma 6. Under Assumptions 1-5, the AP is well defined for every t = 0, 1, 2, ….. Moreover, it 

generates a sequence of positive price vectors {P(Tt)} such that for every t, if Tt  ≠ Tt+1 one obtains 

that r(Tt+1) > r(Tt). 

Proof. Assumptions 4 and 5 and Lemma 4 ensure that at each period the set upon which firms and 

household have to choose, i.e. Fi(Tt, yt) and H(Tt, yt), are compact. Hence, by Remark 1 and given 

the assumptions on households’ preferences, at any period t there exists a CMT-Πi Fi(Tt-1, yt-1) and 

a OCC- H(Tt-1, yt-1). The properties of the price sequence follow from Lemmas 1 and 2. 

Proposition 1. Under Assumptions 1-5 and for whatever initial technique T0∈X and net production 

vector y0 ∈Q(T0), the AP stops either in a finite or in an infinite number of steps. In the former case 

the (finite) sequence converges to a LSC; in the latter the (infinite) sequence either converges to a 

LSC or the limit of every converging subsequence is a LSC. 
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Proof. Set Ω = {(T, y) ∈ n
X +×ℜ  | y ∈ H(T, y), T ∈ F(T, y), (1+r(T))A’p(T)+ wl’≥ p(T) where (A’, 

l’) ∈ F(T, y),  y ( , )H T y
� y’ where y ∈H(T, y)}. In words, Ω is the set of LCSs. By Lemma 4, set Y = 

{y ∈ R
m | y ∈ Q(T), T ∈ X}= Q(X) is compact. Hence, without any loss, the elements (T, y) can be 

considered to belong to the compact set X×Y. By the assumption on preferences and on 

correspondences Fi and G and from Remark 1 it follows that Ω is a closed subset of the compact set 

X×Y, hence Ω is compact as well. 

Consider now the algorithm: A: X×Y→→ X×Y defined by the rule: A(T’, y’) = {(T, y) ∈ F((T’, y’) 

× H(T’, y’) | r(T) ≥ r(T
o
), for T

o
 ∈ F(T’, y’) and  y ( ', ')H T y

� y
o
 for y

o
 ∈H(T’, y’)}. By Remark 1, the 

algorithm A associates to each configuration (T’, y’) the set of CM-F(T’,y’)H(T’,y’)s. 

Notice that by Lemma 5 correspondences F and G are continuous. As G and Q are continuous (see 

the proof of Lemma 4), one has that also H = G∩Q is continuous (see e.g. Border (1995)). Thus, 

correspondence A is upper hemi continuous by Berge Theorem (see Berge (1966)) as the rate of 

profit is a continuous function of T (see Lemma 1) and under Assumption 3 households preferences 

can be represented by a continuous utility function (see Debreu (1954)). 

Notice now that, by the behavioural assumptions on producers and consumers, the sequence of 

techniques and net consumption vectors generated by the AP can be considered as generated by the 

algorithm defined by correspondence A (by possibly making an appropriate selection of techniques 

and net production vectors at each period) having set Ω as solution set and with value function r 

(see Zangwill, 1969, Chapter 4). By what has been said before, all point {Tt, yt} belong to the 

compact set X×Y. Hence the (infinite) sequence has at least one limit point.  

Notice that if (T, y) ∉Ω, then either there exists T
o
 = (A

o
, l

o
)∈ F(T, y) such that  r(T

o
) > r(T) (see 

Lemma 2), or there exists y
o
 ∈H(T, y) such that y

o
( , )H T y

�
y, while if (T, y) ∈Ω, then  r(T) ≥ r(T

o
) 
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for every T
o
 ∈ F(T, y) and y ( , )H T y

�
y

o
 for every y

o
 ∈H(T, y). Therefore, by Zangwill Convergence 

Theorem A (see Zangwill, 1969, p. 91), the limit of any convergent subsequence of {Tt, yt}, say 

(T*, y*), belongs to Ω.  

The result above does not exclude that the (infinite) sequence generated by the algorithm has more 

than one limit point. From the empirical point of view this feature of our model is quite disturbing, 

as this would mean that according our model the economies can “jump” permanently around more 

than one technique or net consumption vector. This case would contradict the literature on 

“technological trajectories” (see, e.g. Dosi (1982)), which is strongly supported by empirical 

evidence. In order to avoid this phenomenon, therefore, we introduce three conditions each of them 

ensuring that the whole sequence generated by the AP converges towards a LSC.  

Assumption 6(i). There is only one LCS.  

Under Assumption 6(i) it is trivial to see that the whole sequence converges to the LCS. His 

assumption, however, is not very interesting from the economic point of view. 

Assumption 6(ii). There exists a family of disjoint compact neighbourhoods of the LCS, say ∆, 

such that each element of the family contains at most one LSC and, if (T, y) is a LCS and (T, y) ∈ 

N(T, y)∈∆, then ∏iFi(T, y) ×G (T, y) ⊂ N(T, y). 

Assumption 6(ii) has a very clear economic meaning: it means that from a secular equilibrium is not 

possible to “jump” in one step to another secular equilibrium. If we interpret secular equilibria as 

the outcome of a long period of knowledge development defining technological and preferences 

trajectories, then such assumption amounts to saying that it is not possible at the end of a 

technological and preferences trajectory to jump in one “period” to the end of an alternative 

trajectory. Hence, Assumption 6(ii) amounts to emphasising the cumulative nature of knowledge 

and the time dimension of knowledge as far as technology and preferences are concerned. 
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Proposition 2. Under Assumptions 1-5 and 6(ii) the (whole infinite) sequence {Tt, yt} generated by 

the AP converges to a LCS.
4
 

Proof. First we show that if {Tt, yt} is a  sequence generated by the AP, then d(Tt, Tt+1)→0 and 

d(yt, yt+1) → 0 as t →∞, where d is any metric defined on X and R
n
. Suppose not. Then, there exist a 

sub-sequence {Tt, yt} such that either d(Tt, Tt+1)→ β > 0 or d(yt, yt+1) → β > 0 as t →∞. Without 

loss of generality we can assume that d(Tt, Tt+1)→ β > 0 as t →∞. We may assume that Tt 

converges to T* and Tt+1 converges to T**. Clearly, d(T*, T**) ≥ β. By Proposition 1, T* and T** 

are LSCs, moreover T**∈F(T*) (because Tt+1∈F(Tt) for every t), by this contradicts Assumption 

6(iii). 

Suppose now that the assertion is not true. Therefore, if {Tt, yt} is a sequence generated by the AP, 

then there must exist at least two subsequences, say {Tt’, yt’} and {Tt’’, yt’’} converging to {T’, y’} 

and {T’’, y’’}, respectively. By Proposition 1 again, every accumulation point of sequence {Tt, yt} 

is a LSC, therefore, by Assumption 6(iii) it is possible to take two positive numbers ε and φ such 

that (T’, y’) and (T’’, y’’) are the sole accumulation points in Bε(Tt’) × Bε(yt’), and Bf(Tt’’) ×Bf(yt’’), 

respectively, where Bε(T’) ⊂ N(T’), Bε(y’) ⊂ N(y’), Bφ(T’’) ⊂ N(T’’), Bφ(y’’) ⊂ N(y’’). Choose any 

positive number Z in such a way that min[ d(Tz,Tz+1), d(yz,yz+1)] < ε’/3 for z ≥ Z (That such a 

number exists follows from the result at the beginning of this proof). However, (T’, y’) is an 

accumulation point of sequence {Tt, yt}, therefore, for infinitely many indices s one has that d(Ts, 

T’) < ε’/3 and d(ys, y’) < ε’/3. On the other hand, (T’’, y’’) is another accumulation point of 

sequence {Tt, yt}, hence, by the fact that (T’’, y’’) ∉ Bε(Tt’) × Bε(yt’), there must exist infinitely 

many indices m ≥ Z such that (ε’/3) ≤ d(Tm, T’) ≤(2ε’/3) and (ε’/3) ≤ d(ym, y’) ≤(2ε’/3). This 

                                                           
4
 It may be worth emphasising the following methodological fact: the standard dynamic theory puts emphasis upon 

recurrent points (equilibria) and considers non recurrent points as being not very important.  Thus, the state space is 

studied only in terms of recurrent points (for a clear statement of this methodological position see Akin (1993  p. 2)). By 

contrast, in our analysis, we adopt the opposite viewpoint: our attention is mainly on the behaviour of transitory states 

and we introduce assumptions upon the recurrent points in order to obtain a “nice” dynamics from the economic point 

of view. 
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implies that there exists an accumulation point in the set {T∈X| (ε’/3) ≤ d(T, T’) ≤(2ε’/3)}×{y∈X| 

(ε’/3) ≤ d(T, T’) ≤(2ε’/3)} ⊂ N(T’) × N(y’), which contradicts Assumption 6(ii). 

Notice that in the preceding proof the crucial step is showing that the distance of successive 

elements of the sequence tends to zero as t tends to infinity. This condition can be ensured in a more 

straightforward way, which turns out to be also much more appealing from the economic point of 

view, i.e. to assume that the size of the correspondences F and G decreases over time and collapse 

asymptotically into a point. This assumption essentially means from the economic point of view 

that there are decreasing returns in discovering new technology and that the exploration by the 

households of the space of net production in order to define their preferences tends to exhaust over 

time. These assumptions are quite palatable and, at least for the technological side, is known as 

Wolf’s Law and it is widely assumed (see e.g. Young (1993, f. 3)) and empirically verified. So, by 

setting diam(X) = inf{d∈R|  X ⊂ Bd} where X is a generic set in R
n
 and Bd is the ball of radius d in 

R
n
, we have: 

Assumption 6(iii). For every sequence {(Tt, yt)}t and for every i, diam(Fi(Tt, yt)) → 0 and 

diam(G(Tt, yt))→0 as t→∞. 

The proof of the following result is easy and similar to the second part of the Proof of Proposition 2. 

Proposition 3. Under Assumptions 1-5 and 6(iii) any (infinite) sequence {(Tt, yt)}t generated by the 

AP converges to a LSC. 

 

4. Structural change and  product innovation 

As anticipated in the Introduction, one of the main features of modern economies is the ever 

changing number of commodities produced. Such a phenomenon is moreover considered as one of 

the main drive of a sustained growth of economies over time. Unfortunately, the existing models of 

structural change does not seem to be able to tackle such a phenomenon as either they explicit rule 

out change in the number of product or they allow it but in an exogenously way. Thus, one may 
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rightly wonder whether the model developed in the preceding section is able to deal with a changing 

number of commodities over time. In this section we shall provide two numerical examples 

showing that the answer is positive. In the first example, we shall illustrate the case of emergence of 

new pure consumption goods, while in the second example we shall illustrate the case of the 

emergence of new pure capital goods. More complex cases can be easily envisaged by the reader. 

 

Example 1. Emergence of consumption goods 

Consider a two good economy, call them “corn”, indicated by c, and “tea” indicated by t. Suppose 

that there exists only one method to produce each of the two commodities and that there is no 

technical progress. Suppose also that the wage rate is equal to 0.1 and that corn is used as 

numeraire. Let ( )o o o o, , (0.1,0,1)
c cc ct c

a a a l= = be the method to produce corn and 

o o o o( , , ) (0.1,0,1.1)
t tc tt t

a a a l= = the method to produce tea. Suppose also that labour is available in 

unlimited amount, so any vector in the non negative orthant is feasible. Finally, assume that 

(aggregate) preferences of consumers are given over the space of net product and they are 

represented by the utility function: U(yc, yt) = (yc+1)(yt+1)-1, and that the law of motion defining the 

exploration of the net demand space is:  

{ }2 o o o o( ) , , max 0, ( ), max 0, ( )o
G y y y y y y y y y K e y y y y K e yε ε+= ∈ℜ = = + = +  −  = + +  −      

where o 2
y +∈ℜ  is the status quo, ε and K are positive real numbers, ⋅  indicates the norm operator 

and { }o o 2 o( ) ( ) 1, 0e y H y y y y y
⊥

+∈ = ∈ℜ = ⋅ = .  

Figure 1 illustrates set G(y
o
) for the case y

o
 = (1, 1), ε = 

2

2
 and K = 1. This set is given by the six 

vectors y
o
, y

o
 + ε, a, b, c and d, where the distance between y

o
 and, for example, d is equal to 

2 1− .   
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Now, set o o( ,0)
c

y y= with o

c
y < 1. It is immediate to check that for any period t ≤ t*, 

{ }2( ) ( , ) , , 0t t t t

c t c c c t
G y y y y y y y yε+= ∈ℜ = = + = , where 

o

* min
K y

t t t
ε

 − 
= ∈ > 

  
� . It follows 

that from time 0 to time t*-1 only corn is demanded and produced. However, from *t t=  onwards, 

ty K>  and max 0, 0
t t

y K y K −  = − >     hence, 

{ }2( ) , , max 0, ( ), max 0, ( )t t t t t
G y y y y y y y y y K e y y y y K e yε ε+ +

+= ∈ℜ = = + = +  −  = + +  −    

, where ( ) (0,1)te y+ = (see Figure 2). Obviously, by strict monotonicity, it follows that 

bundle ( , )t

cy y Kε+ − will be chosen. Thus, while up to time t*-1 only corn is demanded, from time 

t* onwards corn and tea are demanded and produced. 

 

 

Figure 1 
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Example 2. Emergence of capital goods. 

Let us consider an economy in which only two commodities can potentially be produced, called 

“corn” and “fertiliser”. Corn is not only a consumption good but it is also used as circulating 

capital, while fertiliser can be used only as circulating capital. Either commodities are produced by 

means of constant returns to scale methods of production. More specifically,  fertiliser could be 

produced via the following method of production af = (afc, aff, lf) = (0.1, 0, 1), where afc indicates the 

amount of corn used to produce one unit of fertiliser, aff indicates the amount of fertiliser used to 

produce one unit of fertiliser and lf indicates the amount of labour necessary to produce one unit of 

fertiliser. It is assumed that the method used in the fertiliser industry does not change over time. By 

contrast, the corn industry is characterised by a changing set of available methods according to the 

following rule (with obvious meaning): 

t

c
y  

t

c
y ε+  

( , )
t

cy y K− ( , )t

c
y y Kε+ −K 

yc 

yt 

Figure 3 

(0,1) 

( )te y+
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o o o

o o o o o o o

1 2 3

o o o o

0.01

( ) ( ) , ( ) , ( ) 0.01

0.1 max 0.001, 4(1 )

cc cc cc

c c cf c cf c cf

c c c c

a a a

F a a a a a a a a a a

l l l l

      −
       = = = = +    

     
 −  − −       

,   (*) 

where o o o o( , , )c cc cf ca a a l= indicates the currently used method. Rule (*) indicates that each current 

technique in producing corn, o

c
a , makes available three other methods, indicated by o

1( )
c

a a , o

2 ( )
c

a a  

and o

3( )
c

a a  with the features indicated by the above rule. 

Suppose that the wage rate is given and equal to one, and that corn is used as numeraire. Finally, 

suppose that at time 0 there is only one available method to produce corn and it is the following: 

o o o( , , ) (0.1,0,1.1).c cc cf ca a a l= =  From rule (*) it follows that the following three methods will be 

available in the economy at time 1: 

o

1( ) (0.1,0,1.1)
c

a a = , o

2 ( ) (0.1,0,1)
c

a a = , o

3( ) (0.09,0.01,1.5)
c

a a = . 

It can be checked that the cost-minimising technique is o

2 ( )
c

a a , i.e. fertiliser is neither produced nor 

used up in production. As a matter of fact, this technique yields a profit rate equal to 8, while the 

technique made up by o

3( )
c

a a and af yields a profit rate equal to 7.5393. Considering 1 o

2 ( )
c c

a a a=  as 

status quo technique at time 1, rule (*) implies that at time 2 the following three methods will be 

available to produce corn: 

1

1( ) (0.1,0,1)
c

a a = , 1

2 ( ) (0.1,0,0.9)
c

a a = , 1

3( ) (0.09,0.01,1)
c

a a = . 

Also in this case, it is possible to check that the cost-minimising technique is made only by method 

1

2 ( )
c

a a , which implies that fertiliser is neither produced nor used to produce corn. As a matter of 

fact, this technique yields a profit rate equal to 8.1, while the technique made up by o

3( )
c

a a and af 

yields a profit rate equal to 8. Considering 2 1

2 ( )
c c

a a a=  as status quo technique at time 2, rule (*) 

implies that at time 3 the following three methods will be available to produce corn: 

2

1( ) (0.1,0,0.9)
c

a a = , 2

2 ( ) (0.1,0,0.8)
c

a a = , 2

3( ) (0.09,0.01,0.5)
c

a a = .  
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Unlike the preceding period, at time 3 the cost minimising technique is given by methods 

2

3( )
c

a a and af, as it yields a profit rate equal to 8.4568, while the technique made only by method 

2

2 ( )
c

a a  yields a profit rate equal to 8.2. It follows that while in periods 0, 1 and 2 the economy 

produces only corn, at time 3 corn and fertiliser are produced. 

 

 

5. Heterogeneous firms: towards an evolutionary general equilibrium analysis of structural 

change 

 

The model developed in the preceding sections is based on the idea that agents (firms and 

consumers) decide according to their knowledge of the relevant parameters and assumes that each 

industry can be represented by only one process of production. The latter assumption can be 

justified on several grounds. The usual interpretation used by the follower of the “classical” 

approach (see, e.g. Kurz and Salvadori (1995), Pasinetti (1975)) is that as production prices 

represent long period prices, then it is natural to assume that all firms are able to use the best 

technology. However, empirical works does not seem to support such a conclusion as firms 

operating in the same industry persistently maintain different methods of production, with different 

levels of efficiency (see, e.g. Bartelsman and Doms (2000) and  Nelson (1991)). Particular emphasis 

has been put on the persistence of differential productivity by the evolutionist literature, which 

explains  the origin of such differences on the basis of the existence of tacit knowledge which 

makes each firm unique in its knowledge assets. This interpretation fits well with our approach as, 

having made explicit the knowledge set, we can assume that the initial technology knowledge set of 

each firm is different and that each firm experiences a different evolution of this set. In our 

approach, therefore, persistent heterogeneity of firms is particularly appropriate. 

If we extend the analysis to this direction we are able to extend the study of evolution of industries 

within a partial equilibrium approach as carried out for example by Metcalfe (1995, 1998), 
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Metcalfe, Fonseca and Ramlogan (2001), Montobbio (2002) to a truly multisectoral linear 

production model with structural dynamics. Therefore, our model could represent the bridge 

between Pasinetti’s model of structural change and the literature on evolutionary economics.  

To this end, we assume that in sector i there are mi firms and let us indicate by jfi the generic j-th 

process available to firm f. The process j-th available to firm f in sector i is represented by the 

couple bjfi= (ajfi, ljfi). Set Mi = {1, 2, …., mi}. Let us assume for the sake of simplicity that at time 0 

there is only one process available to each firm, denoted process 1, and denote by b1fi0= (a1fi0, l1fi0) 

the process available to firm f in sector i at time 0. We call elementary technique any technique 

which is made up by only one method in each industry. Therefore, there are m1x m2x….x mn 

elementary techniques. Let T0 = (A0, l0) be the technique made up by the processes defining all 

firms in the economy and T
f0 = (A

f0, l
f0) be a generic elementary technique made up by firm fi in 

sector i, where f0 = (f1, f2, … fn). Indicate by C0 the set of indices f0 of elementary techniques 

obtained considering in each sector all possible combinations of firms. Assuming that for each 

elementary technique the usual technological conditions are satisfied  (see Assumptions 1 and 2), it 

follows that each elementary technique yields a positive price vector p
f0 and a positive rate of profit 

r
f0. Choose any elementary technique yielding the lowest rate of profit, say f’0 = (f’1, f’2, … f’n).; i.e. 

r
f’0 ≤ r

f0 for every f0 ∈C0 (the existence of this technique can be easily shown). Let p
f’0

 be the 

associated price vector  

Suppose now that all mi firms are operating in sector i at price p
f’0 and rate of profit r

f’0. It is easy to 

show that any other firm fj0 ≠ f’i0 yields non negative extra profits, γfi0; i.e. γfi0 satisfies the equality:
5
 

γfi0 + (1+ r
f’0)a1fip

f0  + wl1fi = pi
0
. Indicate by γi0 the average extra profits in sector i at time 0; i.e. 

0

0

fj

fj
i

im

γ
γ =

∑
. 

As for the “quantity side” we consider the “aggregate” technology T0(s) defined as the technology 

obtained as a linear combination of the processes in each sector weighted by the market share of 
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firms and where s indicates a vector with m1+m2+….+ mn elements each of which is the market 

share of each firm in each industry. For the sake of simplicity, we assume that at time 0 the share of 

each firm in producing the gross production of good i is equal for all firms to the number si = 1/mi. 

Thus T0(s) = (A0(s), l0(s)) where the process b0(s) in industry i in matrix A0(s) is b0(s) = (a0(s), l0(s)) 

= (Σfisia1fi0 , Σfisil1fi0 ). The aggregate technique T0 determines the gross production vector x0, given 

the net production vector y0; i.e. vector x0 is the solution to the equation x0 = A0(s) x0 + y0. Thus, at 

period 0 the generic firm fi in sector i will produce sixi(0). We assume also that at period 1 the 

market share of each firm depends upon the difference between its extraprofits and the average one 

in the same industry at time 0; i.e. sif = max [0, si + hi(γ
f0

 -γi0)], where hi > 0. Moreover, at period 1 

firm fi in industry i will learn a new set of techniques Ffi(T0, y0) and consumers will define their 

preferences of the subset G(T
f’0, y0). Denote by Pfi1 the set of indices of the processes available to 

firm f in industry i at time 1 and by bjfi1= (a jfi1, ljfi1) the generic process j available to firm f in sector 

i at time 0. 

A generic elementary technique at time 1 is indicated by T
fj1 

. Again, consider the set of 

hypothetical elementary techniques, and denote by T
(j, f)1

 = (A
(j, f)1, l

(j, f)1) be a generic elementary 

technique made up by process ji operated by firm f in sector i, where (j, f) = (j1f1, j2f2, …, jnfn), ji ∈ 

Pfi1, fi = 1, 2, …, mi. If all possible elementary techniques satisfy the appropriate technological 

conditions for ensuring positive price vector p
(j, f)1 and positive uniform rate of profit r

(j, f)1 (see 

Assumptions 1 and 2), we can define the uniform rate of profit of this economy r*
1
 as the maximum 

rates of profit which will be yielded by choosing the “worst” firm in each sector (i.e. that one which 

yields the lowest rate of profit by choosing the technique yielding the highest rate of profit). In 

formal terms: 1 (j, f)1

f j
* min max ( )r r T =

  
 . The associated price vector is p*

1
. It is easy to see at these 

price vector all firms in all sectors yields non negative extra profits by choosing their best (i.e. 

                                                                                                                                                                                                 
5
 The reader will notice the similarity of our approach with the extensive rent case in Sraffa (1960, Chapter XI). 



 24

extra-profit maximising) process. In this way we can calculate the market share of all firms in each 

sector next period , and so on and so forth. 

Within this framework, it is possible in principle to develop the descriptive evolutionary analysis of 

the industries as that one in Metcalfe (1995)(1998) and in Montobbio (2003). Unlike their work, 

however, the analysis which can be carried out from our model has the advantage to determine 

endogenously the price vector on the ground of a full fledged multisectoral model of structural 

change. 
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